Задание 24 из ОГЭ по математике: задача 30

Разбор сложных заданий в тг-канале:

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали пересекаются в точке $M$. Докажите, что площади треугольников $AMD$ и $CBM$ равны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что около четырёхугольника $CDEF$ можно описать окружность и что продолжения сторон $EF$ и $DC$ четырёхугольника пересекаются в точке $B$. Докажите, что треугольники $BDE$ и $BCF$ по…

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.

В треугольнике $ABC$ с тупым углом $C$ проведены высоты $AA_1$ и $BB_1$. Докажите, что треугольники $A_1CB_1$ и $ABC$ подобны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!