Задание 24 из ОГЭ по математике: задача 30
В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали пересекаются в точке $M$. Докажите, что площади треугольников $AMD$ и $CBM$ равны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что около четырёхугольника $CDEF$ можно описать окружность и что продолжения сторон $EF$ и $DC$ четырёхугольника пересекаются в точке $B$. Докажите, что треугольники $BDE$ и $BCF$ по…
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.