Задание 24 из ОГЭ по математике: задача 29
Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны
В выпуклом четырёхугольнике $ACDE$ углы $ACE$ и $ADE$ равны. Докажите, что углы $CAD$ и $CED$ также равны.