Задание 24 из ОГЭ по математике: задача 29
Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…
В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.
Известно, что около четырёхугольника $CDEF$ можно описать окружность и что продолжения сторон $EF$ и $DC$ четырёхугольника пересекаются в точке $B$. Докажите, что треугольники $BDE$ и $BCF$ по…