Задание 24 из ОГЭ по математике: задача 36
Высоты $LL_1$ и $NN_1$ остроугольного треугольника $LNO$ пересекаются в точке $F$. Докажите, что углы $LL_1N_1$ и $LNN_1$ равны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с центрами в точках $O_1$ и $O_2$ не имеют общих точек. Внешняя общая касательная к этим окружностям пересекает прямую $O_1O_2$ в точке $X$. Длины отрезков $O_1X$ и $O_2X$ относятся…
Точка $M$ — середина боковой стороны $CD$ трапеции $ABCD$. Докажите, что площадь треугольника $ABM$ равна половине площади трапеции.
В параллелограмме MNPQ сторона MN в два раза меньше стороны NP. Точка Z – середина стороны MQ. Докажите, что NZ – биссектриса.