Задание 24 из ОГЭ по математике: задача 33

Разбор сложных заданий в тг-канале:

В параллелограмме ABCD точка M — середина BC. Известно, что AM=MD. Докажите, что данный параллелограмм — прямоугольник.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Точка M — середина боковой стороны CD трапеции ABCD. Докажите, что площадь треугольника ABM равна половине площади трапеции.

В треугольнике ABC с тупым углом C проведены высоты AA1 и BB1. Докажите, что треугольники A1CB1 и ABC подобны.

В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 18:5, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!