Задание 24 из ОГЭ по математике: задача 33
В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В остроугольном треугольнике $MNP$ высоты $MM_1$ и $NN_1$ пересекаются в точке $O$. Докажите, что треугольники $MNO$ и $M_1N_1O$ подобны.
В остроугольном треугольнике $MNP$ высоты $MM_1$ и $NN_1$ пересекаются в точке $O$. Докажите, что треугольники $MNO$ и $M_1N_1O$ подобны.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…