Задание 24 из ОГЭ по математике: задача 32

Разбор сложных заданий в тг-канале:

Основания $AB$ и $CD$ трапеции $ABCD$ равны соответственно $6$ и $24$, $AC=12$. Докажите, что треугольники $ABC$ и $ACD$ подобны .

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Точка $M$ является произвольной внутренней точкой параллелограмма $ABCD$. Докажите, что сумма площадей треугольников $ABM$ и $CMD$ равна половине площади параллелограмма $ABCD$.

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Биссектрисы углов $M$ и $P$ параллелограмма $MNKP$ пересекаются в точке $A$ стороны $NK$. Докажите, что $A$ — середина $NK$.

Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!