Задание 24 из ОГЭ по математике: задача 15

Разбор сложных заданий в тг-канале:

Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Биссектрисы углов $M$ и $P$ трапеции $MNKP$ с основаниями $NK$ и $MP$ пересекаются в точке $B$, лежащей на стороне $KN$. Докажите, что точка $B$ равноудалена от прямых $MN$, $MP$ и $KP$.

Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

Около четырёхугольника $MNPQ$ описана окружность, а продолжения сторон $NP$ и $MQ$ пересекаются в точке $A$. Докажите, что треугольники $ANM$ и $APQ$ подобны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!