Задание 24 из ОГЭ по математике: задача 10
В параллелограмме $KLMN$ с острым углом $K$ проведены перпендикуляры $LC$ и $NB$ к диагонали $KM$. Докажите, что $LBNC$ — параллелограмм.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…
Внутри трапеции $ABCD$ с основаниями $AB$ и $CD$ на средней линии выбрали произвольную точку $M$. Докажите, что сумма площадей треугольников $ABM$ и $CDM$ равна половине площади трапеции.
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны