Задание 24 из ОГЭ по математике: задача 27
Около четырёхугольника $MNPQ$ описана окружность, а продолжения сторон $NP$ и $MQ$ пересекаются в точке $A$. Докажите, что треугольники $ANM$ и $APQ$ подобны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания $AB$ и $CD$ трапеции $ABCD$ равны соответственно $6$ и $24$, $AC=12$. Докажите, что треугольники $ABC$ и $ACD$ подобны .
В остроугольном треугольнике $MNP$ высоты $MM_1$ и $NN_1$ пересекаются в точке $O$. Докажите, что треугольники $MNO$ и $M_1N_1O$ подобны.
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…