Задание 24 из ОГЭ по математике: задача 52

Разбор сложных заданий в тг-канале:

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна $55$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Докажите, что медиана треугольника делит его на два треугольника, имеющих равные площади.

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.

В трапеции ABCD основания BC и AD равны соответственно 8 и 24, диагональ BD в 3 раза больше меньшего основания. Докажите, что треугольники ABD и BCD подобны.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!