Задание 24 из ОГЭ по математике: задача 21
В трапеции ABCD основания BC и AD равны соответственно 8 и 24, диагональ BD в 3 раза больше меньшего основания. Докажите, что треугольники ABD и BCD подобны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.
Биссектрисы углов $M$ и $P$ трапеции $MNKP$ с основаниями $NK$ и $MP$ пересекаются в точке $B$, лежащей на стороне $KN$. Докажите, что точка $B$ равноудалена от прямых $MN$, $MP$ и $KP$.
$PH$ и $QH_1$ являются высотами остроугольного треугольника MPQ. Докажите, что углы $HH_1P$ и $H_1PQ$ равны.