Задание 24 из ОГЭ по математике: задача 53

Разбор сложных заданий в тг-канале:

Точка $M$ — середина боковой стороны $CD$ трапеции $ABCD$. Докажите, что площадь треугольника $ABM$ равна половине площади трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В остроугольном треугольнике $MNP$ высоты $MM_1$ и $NN_1$ пересекаются в точке $O$. Докажите, что треугольники $MNO$ и $M_1N_1O$ подобны.

В треугольнике $ABC$ с тупым углом $C$ проведены высоты $AA_1$ и $BB_1$. Докажите, что треугольники $A_1CB_1$ и $ABC$ подобны.

В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.

В выпуклом четырёхугольнике $ACDE$ углы $ACE$ и $ADE$ равны. Докажите, что углы $CAD$ и $CED$ также равны.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!