Задание 24 из ОГЭ по математике: задача 54
В середине боковой стороны $BC$ трапеции $ABCD$ отмечена точка $M$. Докажите, что площадь треугольника $AMD$ равна половине площади трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В остроугольном треугольнике $MNP$ высоты $MM_1$ и $NN_1$ пересекаются в точке $O$. Докажите, что треугольники $MNO$ и $M_1N_1O$ подобны.
Биссектрисы углов $M$ и $P$ трапеции $MNKP$ с основаниями $NK$ и $MP$ пересекаются в точке $B$, лежащей на стороне $KN$. Докажите, что точка $B$ равноудалена от прямых $MN$, $MP$ и $KP$.
В треугольнике $ABC$ с тупым углом $C$ проведены высоты $AA_1$ и $BB_1$. Докажите, что треугольники $A_1CB_1$ и $ABC$ подобны.