Задание 24 из ОГЭ по математике: задача 44

Разбор сложных заданий в тг-канале:

В остроугольном треугольнике $MNP$ высоты $MM_1$ и $NN_1$ пересекаются в точке $O$. Докажите, что треугольники $MNO$ и $M_1N_1O$ подобны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.

В выпуклом четырёхугольнике $ACDE$ углы $ACE$ и $ADE$ равны. Докажите, что углы $CAD$ и $CED$ также равны.

В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!