Задание 24 из ОГЭ по математике: задача 45
Окружности с центрами в точках $O_1$ и $O_2$ не имеют общих точек. Внешняя общая касательная к этим окружностям пересекает прямую $O_1O_2$ в точке $X$. Длины отрезков $O_1X$ и $O_2X$ относятся как $m:n$. Докажите, что диаметры этих окружностей относятся также как $m:n$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Около четырёхугольника $MNPQ$ описана окружность, а продолжения сторон $NP$ и $MQ$ пересекаются в точке $A$. Докажите, что треугольники $ANM$ и $APQ$ подобны.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…