Задание 24 из ОГЭ по математике: задача 46

Разбор сложных заданий в тг-канале:

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $P$ и $Q$, причём $O_1$ и $O_2$ лежат по разные стороны от прямой $PQ$. Докажите, что $PQ⊥ O_1O_2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В параллелограмме $MNPQ$ сторона $MN$ вдвое больше стороны $MQ$. Точка $A$ — середина стороны $MN$. Докажите, что $PA$ — биссектриса угла $QPN$.

На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $LHM$ и $KHN$ равна половине площади трапеции.

В выпуклом четырёхугольнике $KLMN$ углы $LMK$ и $LNK$ равны. Докажите, что углы $LKM$ и $LNM$ также равны.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!