Задание 24 из ОГЭ по математике: задача 46
Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $P$ и $Q$, причём $O_1$ и $O_2$ лежат по разные стороны от прямой $PQ$. Докажите, что $PQ⊥ O_1O_2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике $ABC$ на его медиане $BM$ отмечена точка $L$ так, что площадь треугольника $ABL$ в $9$ раз меньше площади треугольника $ABC$. Докажите, что $BL : LM = 2 : 7$.
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны
В выпуклом четырёхугольнике $KLMN$ углы $LMK$ и $LNK$ равны. Докажите, что углы $LKM$ и $LNM$ также равны.