Задание 24 из ОГЭ по математике: задача 46

Разбор сложных заданий в тг-канале:

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $P$ и $Q$, причём $O_1$ и $O_2$ лежат по разные стороны от прямой $PQ$. Докажите, что $PQ⊥ O_1O_2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружности с центрами в точках $P$ и $Q$ не имеют общих точек. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $3:7$. Докажите, что диам…

В выпуклом четырёхугольнике $KLMN$ углы $LMK$ и $LNK$ равны. Докажите, что углы $LKM$ и $LNM$ также равны.

Докажите, что AM=CN, если в параллелограмме ABCD диагонали пересекаются в точке O, через которую проведена прямая, пересекающая стороны AB и CD в точках M и N соответственно.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!