Задание 24 из ОГЭ по математике: задача 13

Разбор сложных заданий в тг-канале:

В окружности через середину $C$ хорды $AB$ проведена хорда $DF$ так, что дуги $AD$ и $BF$ равны. Докажите, что $C$ — середина хорды $DF$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В трапеции ABCD основания BC и AD равны соответственно 8 и 24, диагональ BD в 3 раза больше меньшего основания. Докажите, что треугольники ABD и BCD подобны.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!