Задание 24 из ОГЭ по математике: задача 13
В окружности через середину $C$ хорды $AB$ проведена хорда $DF$ так, что дуги $AD$ и $BF$ равны. Докажите, что $C$ — середина хорды $DF$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
В остроугольном треугольнике $BCD$ проведены высоты $BB_1$ и $CC_1$. Докажите, что углы $CBB_1$ и $CC_1B_1$ равны.
В середине боковой стороны $BC$ трапеции $ABCD$ отмечена точка $M$. Докажите, что площадь треугольника $AMD$ равна половине площади трапеции.