Задание 24 из ОГЭ по математике: задача 12
В треугольнике $ABC$ на его медиане $AL$ отмечена точка $D$ так, что площадь треугольника $BDL$ в $2,5$ раза меньше площади треугольника $ABC$. Докажите, что $AD : DL = 1 : 4$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны
Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.
Биссектрисы углов $M$ и $P$ трапеции $MNKP$ с основаниями $NK$ и $MP$ пересекаются в точке $B$, лежащей на стороне $KN$. Докажите, что точка $B$ равноудалена от прямых $MN$, $MP$ и $KP$.