Задание 24 из ОГЭ по математике: задача 11
В треугольнике $ABC$ на его медиане $BM$ отмечена точка $L$ так, что площадь треугольника $ABL$ в $9$ раз меньше площади треугольника $ABC$. Докажите, что $BL : LM = 2 : 7$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны
Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.
Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.