Задание 24 из ОГЭ по математике: задача 11

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ на его медиане $BM$ отмечена точка $L$ так, что площадь треугольника $ABL$ в $9$ раз меньше площади треугольника $ABC$. Докажите, что $BL : LM = 2 : 7$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.

Основания $AB$ и $CD$ трапеции $ABCD$ равны соответственно $6$ и $24$, $AC=12$. Докажите, что треугольники $ABC$ и $ACD$ подобны .

Основания $NP$ и $MK$ трапеции $MNPK$ равны соответственно $9$ и $25$; $NK=15$. Докажите, что треугольники $NPK$ и $MNK$ подобны.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!