Задание 24 из ОГЭ по математике: задача 11

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ на его медиане $BM$ отмечена точка $L$ так, что площадь треугольника $ABL$ в $9$ раз меньше площади треугольника $ABC$. Докажите, что $BL : LM = 2 : 7$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В окружности через середину $F$ хорды $AC$ проведена хорда $BD$ так, что дуги $AD$ и $BC$ равны. Докажите, что $F$ — середина хорды $BD$.

Докажите, что медиана треугольника делит его на два треугольника, имеющих равные площади.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!