Задание 24 из ОГЭ по математике: задача 34
Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что около четырёхугольника $LMTP$ можно описать окружность и что продолжения сторон $PT$ и $ML$ четырёхугольника пересекаются в точке $K$. Докажите, что треугольники $KMT$ и $KLP$ по…
В середине боковой стороны $BC$ трапеции $ABCD$ отмечена точка $M$. Докажите, что площадь треугольника $AMD$ равна половине площади трапеции.
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…