Задание 24 из ОГЭ по математике: задача 35

Разбор сложных заданий в тг-канале:

Высоты $MM_1$ и $NN_1$ остроугольного треугольника $MNP$ пересекаются в точке $A$. Докажите, что $MA⋅ M_1A=NA⋅ N_1A$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

Биссектрисы углов $M$ и $P$ трапеции $MNKP$ с основаниями $NK$ и $MP$ пересекаются в точке $B$, лежащей на стороне $KN$. Докажите, что точка $B$ равноудалена от прямых $MN$, $MP$ и $KP$.

В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…

В трапеции ABCD основания BC и AD равны соответственно 8 и 24, диагональ BD в 3 раза больше меньшего основания. Докажите, что треугольники ABD и BCD подобны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!