Задание 24 из ОГЭ по математике: задача 35

Разбор сложных заданий в тг-канале:

Высоты $MM_1$ и $NN_1$ остроугольного треугольника $MNP$ пересекаются в точке $A$. Докажите, что $MA⋅ M_1A=NA⋅ N_1A$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В окружности через середину $F$ хорды $AC$ проведена хорда $BD$ так, что дуги $AD$ и $BC$ равны. Докажите, что $F$ — середина хорды $BD$.

В параллелограмме $MNPQ$ сторона $MN$ вдвое больше стороны $MQ$. Точка $A$ — середина стороны $MN$. Докажите, что $PA$ — биссектриса угла $QPN$.

В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!