Задание 24 из ОГЭ по математике: задача 56

Разбор сложных заданий в тг-канале:

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

$PH$ и $QH_1$ являются высотами остроугольного треугольника MPQ. Докажите, что углы $HH_1P$ и $H_1PQ$ равны.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!