Задание 24 из ОГЭ по математике: задача 5
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания $NP$ и $MK$ трапеции $MNPK$ равны соответственно $9$ и $25$; $NK=15$. Докажите, что треугольники $NPK$ и $MNK$ подобны.
Четырёхугольник $ABCD$ вписан в окружность. Продолжения его сторон $AB$ и $DC$ пересекаются в точке $M$. Докажите, что треугольники $AMC$ и $BMD$ подобны.
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.