Задание 24 из ОГЭ по математике: задача 5
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Высоты $MM_1$ и $NN_1$ остроугольного треугольника $MNP$ пересекаются в точке $A$. Докажите, что $MA⋅ M_1A=NA⋅ N_1A$.
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…
Четырёхугольник $ABCD$ вписан в окружность. Продолжения его сторон $AB$ и $DC$ пересекаются в точке $M$. Докажите, что треугольники $AMC$ и $BMD$ подобны.