Задание 24 из ОГЭ по математике: задача 5
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.
Четырёхугольник $ABCD$ вписан в окружность. Продолжения его сторон $AB$ и $DC$ пересекаются в точке $M$. Докажите, что треугольники $AMC$ и $BMD$ подобны.
В треугольнике $ABC$ на его медиане $AL$ отмечена точка $D$ так, что площадь треугольника $BDL$ в $2,5$ раза меньше площади треугольника $ABC$. Докажите, что $AD : DL = 1 : 4$.