Задание 24 из ОГЭ по математике: задача 48

Разбор сложных заданий в тг-канале:

Биссектрисы углов $M$ и $P$ параллелограмма $MNKP$ пересекаются в точке $A$ стороны $NK$. Докажите, что $A$ — середина $NK$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Высоты $LL_1$ и $NN_1$ остроугольного треугольника $LNO$ пересекаются в точке $F$. Докажите, что углы $LL_1N_1$ и $LNN_1$ равны.

Докажите, что углы QNP и PMQ равны, если в выпуклом четырехугольнике MNPQ углы MNQ b MPQ равны.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В трапеции ABCD основания BC и AD равны соответственно 8 и 24, диагональ BD в 3 раза больше меньшего основания. Докажите, что треугольники ABD и BCD подобны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!