Задание 24 из ОГЭ по математике: задача 48
Биссектрисы углов $M$ и $P$ параллелограмма $MNKP$ пересекаются в точке $A$ стороны $NK$. Докажите, что $A$ — середина $NK$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.
В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны