Задание 24 из ОГЭ по математике: задача 49
Внутри трапеции $ABCD$ с основаниями $AB$ и $CD$ на средней линии выбрали произвольную точку $M$. Докажите, что сумма площадей треугольников $ABM$ и $CDM$ равна половине площади трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $P$ и $Q$, причём $O_1$ и $O_2$ лежат по разные стороны от прямой $PQ$. Докажите, что $PQ⊥ O_1O_2$.
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.