Задание 24 из ОГЭ по математике: задача 50

Разбор сложных заданий в тг-канале:

Из вершины прямого угла треугольника $MNP$ проведена медиана $NK$. Докажите, что площадь треугольника $MNK$ равна половине площади треугольника $MNP$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания $NP$ и $MK$ трапеции $MNPK$ равны соответственно $9$ и $25$; $NK=15$. Докажите, что треугольники $NPK$ и $MNK$ подобны.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В параллелограмме $CDFG$ с тупым углом $D$ проведены перпендикуляры $CH$ и $FA$ к диагонали $DG$. Докажите, что $ACHF$ — параллелограмм

На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!