Задание 24 из ОГЭ по математике: задача 50
Из вершины прямого угла треугольника $MNP$ проведена медиана $NK$. Докажите, что площадь треугольника $MNK$ равна половине площади треугольника $MNP$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $M$ является произвольной внутренней точкой параллелограмма $ABCD$. Докажите, что сумма площадей треугольников $ABM$ и $CMD$ равна половине площади параллелограмма $ABCD$.
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны
Основания $NP$ и $MK$ трапеции $MNPK$ равны соответственно $9$ и $25$; $NK=15$. Докажите, что треугольники $NPK$ и $MNK$ подобны.