Задание 24 из ОГЭ по математике: задача 38

Разбор сложных заданий в тг-канале:

Основания $NP$ и $MK$ трапеции $MNPK$ равны соответственно $9$ и $25$; $NK=15$. Докажите, что треугольники $NPK$ и $MNK$ подобны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Точка $M$ является произвольной внутренней точкой параллелограмма $ABCD$. Докажите, что сумма площадей треугольников $ABM$ и $CMD$ равна половине площади параллелограмма $ABCD$.

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.

Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!