Задание 24 из ОГЭ по математике: задача 16
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
В параллелограмме MNPQ сторона MN в два раза меньше стороны NP. Точка Z – середина стороны MQ. Докажите, что NZ – биссектриса.
Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.