Задание 24 из ОГЭ по математике: задача 16

Разбор сложных заданий в тг-канале:

Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружности с центрами в точках $O_1$ и $O_2$ не имеют общих точек. Внешняя общая касательная к этим окружностям пересекает прямую $O_1O_2$ в точке $X$. Длины отрезков $O_1X$ и $O_2X$ относятся…

Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.

Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!