Задание 24 из ОГЭ по математике: задача 16
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
Высоты $LL_1$ и $NN_1$ остроугольного треугольника $LNO$ пересекаются в точке $F$. Докажите, что углы $LL_1N_1$ и $LNN_1$ равны.