Задание 24 из ОГЭ по математике: задача 16
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что около четырёхугольника $CDEF$ можно описать окружность и что продолжения сторон $EF$ и $DC$ четырёхугольника пересекаются в точке $B$. Докажите, что треугольники $BDE$ и $BCF$ по…
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
Трапеция с основаниями $12$ и $27$ разбита диагональю, равной $18$, на два треугольника. Докажите, что эти треугольники подобны.