Задание 24 из ОГЭ по математике: задача 31
Докажите, что медиана треугольника делит его на два треугольника, имеющих равные площади.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Четырёхугольник $ABCD$ вписан в окружность. Продолжения его сторон $AB$ и $DC$ пересекаются в точке $M$. Докажите, что треугольники $AMC$ и $BMD$ подобны.
В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали пересекаются в точке $M$. Докажите, что площади треугольников $AMD$ и $CBM$ равны.
Высоты $MM_1$ и $NN_1$ остроугольного треугольника $MNP$ пересекаются в точке $A$. Докажите, что $MA⋅ M_1A=NA⋅ N_1A$.