Задание 24 из ОГЭ по математике: задача 31
Докажите, что медиана треугольника делит его на два треугольника, имеющих равные площади.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Четырёхугольник $ABCD$ вписан в окружность. Продолжения его сторон $AB$ и $DC$ пересекаются в точке $M$. Докажите, что треугольники $AMC$ и $BMD$ подобны.
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…
Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.