Задание 24 из ОГЭ по математике: задача 23

Разбор сложных заданий в тг-канале:

Докажите, что углы QNP и PMQ равны, если в выпуклом четырехугольнике MNPQ углы MNQ b MPQ равны.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что около четырёхугольника $LMTP$ можно описать окружность и что продолжения сторон $PT$ и $ML$ четырёхугольника пересекаются в точке $K$. Докажите, что треугольники $KMT$ и $KLP$ по…

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.

Внутри трапеции $ABCD$ с основаниями $AB$ и $CD$ на средней линии выбрали произвольную точку $M$. Докажите, что сумма площадей треугольников $ABM$ и $CDM$ равна половине площади трапеции.

Высоты $LL_1$ и $NN_1$ остроугольного треугольника $LNO$ пересекаются в точке $F$. Докажите, что углы $LL_1N_1$ и $LNN_1$ равны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!