Задание 24 из ОГЭ по математике: задача 23
Докажите, что углы QNP и PMQ равны, если в выпуклом четырехугольнике MNPQ углы MNQ b MPQ равны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружности через середину $C$ хорды $AB$ проведена хорда $DF$ так, что дуги $AD$ и $BF$ равны. Докажите, что $C$ — середина хорды $DF$.
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно ра…
Внутри трапеции $ABCD$ с основаниями $AB$ и $CD$ на средней линии выбрали произвольную точку $M$. Докажите, что сумма площадей треугольников $ABM$ и $CDM$ равна половине площади трапеции.