Задание 24 из ОГЭ по математике: задача 24

Разбор сложных заданий в тг-канале:

Докажите, что AM=CN, если в параллелограмме ABCD диагонали пересекаются в точке O, через которую проведена прямая, пересекающая стороны AB и CD в точках M и N соответственно.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Биссектрисы углов $M$ и $P$ параллелограмма $MNKP$ пересекаются в точке $A$ стороны $NK$. Докажите, что $A$ — середина $NK$.

Докажите, что медиана треугольника делит его на два треугольника, имеющих равные площади.

В выпуклом четырёхугольнике $MNPQ$ углы $NPM$ и $NQM$ равны. Докажите, что углы $MNQ$ и $MPQ$ также равны.

В параллелограмме $CDFG$ с тупым углом $D$ проведены перпендикуляры $CH$ и $FA$ к диагонали $DG$. Докажите, что $ACHF$ — параллелограмм

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!