Задание 24 из ОГЭ по математике: задача 25

Разбор сложных заданий в тг-канале:

Окружности с центрами в точках $P$ и $Q$ не имеют общих точек. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $3:7$. Докажите, что диаметры этих окружностей относятся также $3:7$ (см. рис.).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В выпуклом четырёхугольнике $MNPQ$ углы $NPM$ и $NQM$ равны. Докажите, что углы $MNQ$ и $MPQ$ также равны.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В параллелограмме $MPQK$ сторона $PQ$ вдвое больше стороны $MP$. Точка $E$ — середина стороны $PQ$. Докажите, что $∠ MEK=90^°$.

На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!