Задание 24 из ОГЭ по математике: задача 25

Разбор сложных заданий в тг-канале:

Окружности с центрами в точках $P$ и $Q$ не имеют общих точек. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $3:7$. Докажите, что диаметры этих окружностей относятся также $3:7$ (см. рис.).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Точка $M$ является произвольной внутренней точкой параллелограмма $ABCD$. Докажите, что сумма площадей треугольников $ABM$ и $CMD$ равна половине площади параллелограмма $ABCD$.

Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны

В параллелограмме $MPQK$ сторона $PQ$ вдвое больше стороны $MP$. Точка $E$ — середина стороны $PQ$. Докажите, что $∠ MEK=90^°$.

Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!