Задание 24 из ОГЭ по математике: задача 25
Окружности с центрами в точках $P$ и $Q$ не имеют общих точек. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $3:7$. Докажите, что диаметры этих окружностей относятся также $3:7$ (см. рис.).
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В выпуклом четырёхугольнике $ACDE$ углы $EAD$ и $ECD$ равны. Докажите, что углы $ACE$ и $ADE$ также равны
В параллелограмме $MPQK$ сторона $PQ$ вдвое больше стороны $MP$. Точка $E$ — середина стороны $PQ$. Докажите, что $∠ MEK=90^°$.
В выпуклом четырёхугольнике $ACDE$ углы $ACE$ и $ADE$ равны. Докажите, что углы $CAD$ и $CED$ также равны.