Задание 24 из ОГЭ по математике: задача 42
В параллелограмме $MPQK$ сторона $PQ$ вдвое больше стороны $MP$. Точка $E$ — середина стороны $PQ$. Докажите, что $∠ MEK=90^°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.
Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны