Задание 24 из ОГЭ по математике: задача 7

Разбор сложных заданий в тг-канале:

В выпуклом четырёхугольнике $ACDE$ углы $EAD$ и $ECD$ равны. Докажите, что углы $ACE$ и $ADE$ также равны

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $P$ и $Q$, причём $O_1$ и $O_2$ лежат по разные стороны от прямой $PQ$. Докажите, что $PQ⊥ O_1O_2$.

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

В параллелограмме $MNPQ$ сторона $MN$ вдвое больше стороны $MQ$. Точка $A$ — середина стороны $MN$. Докажите, что $PA$ — биссектриса угла $QPN$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!