Задание 24 из ОГЭ по математике: задача 2
Основания $BC$ и $AD$ трапеции $ABCD$ равны $3$ и $27$, а $BD = 9$. Докажите, что треугольники $BCD$ и $ABD$ подобны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.
В параллелограмме $MPQK$ сторона $PQ$ вдвое больше стороны $MP$. Точка $E$ — середина стороны $PQ$. Докажите, что $∠ MEK=90^°$.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…