Задание 19 из ЕГЭ по математике (профиль). Страница 2
Костя задумал трёхзначное натуральное число $A$ и посчитал число $m$ — отношение числа $A$ к сумме его цифр. а) Возможно ли, что $m=52$? б) Возможно ли, что $m=81$? в) Какое наибольшее целое…
Дима задумал натуральное число $n$ и посчитал сумму его цифр $s$. а) Возможно ли, что $n⋅ s=35$? б) Может ли $n⋅ s$ равняться $1552$? в) Известно, что $n⋅ s < 14300$ и $n$ — трёхзначное число. Найдите наибольшее возможное значение $n$.
Олег задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=3402$? б) Может ли $n⋅ s=6912$? в) Известно, что $n⋅ s>1786$. Найдите наименьшее возможное зна…
Максим задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=1624$? б) Может ли $n⋅ s=1005$? в) Известно, что $n⋅ s<4738$. Найдите наибольшее возможное значение выражения $n⋅ s$.
Юля задумала натуральное число $a$ и посчитала сумму его цифр, эту сумму она обозначила $b$. Затем она посчитала сумму цифр числа $b$ и обозначила её через $c$. Оказалось, что среди чисел …
На полигоне расположены $500$ узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно $2$ узла, между любыми двумя узлами проходит не более о…
На полигоне расположены $300$ узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно $2$ узла, между любыми двумя узлами проходит не более о…
Музыкальную школу посещают более $20$ и менее $45$ учащихся. На областной конкурс было заявлено более половины ребят из музыкальной школы, но потом ровно один из них отказался участвов…
Множество чисел, состоящее не меньше чем из трёх элементов, назовём «разделимым», если его можно разбить на два непустых подмножества с одинаковым произведением чисел. Если какое-т…
Имеется уравнение $ax^2+bx+c = 0 $, числа $a$, $b$, $c$ — целые, $a≠0$. а) Найдите все возможные значения $b$, если известно, что $a=10$, $c=30$, а уравнение имеет два различных целых корня. б) На…
В школе три одиннадцатых класса: «А», «Б» и «В». В октябре объявили сбор макулатуры, каждый ученик принёс целое число килограммов макулатуры. В классе «А» каждый ученик принёс мень…
В магазине три отдела. В первом отделе представлены товары, цена каждого из которых меньше $100$ рублей. Средняя цена товаров в этом отделе равна $90$ рублей. Во втором отделе представ…
Имеется $40$ куч одинаковых камней, во всех кучах различное натуральное число камней, а общее число камней не превышает $4820$. Найдите наибольшее возможное число камней в самой малень…
На сайте провели опрос, кого из $180$ актёров кино посетители считают лучшим актёром года. На сайте отображается рейтинг каждого актёра — доля голосов, отданная за него, в процентах,…
Витя написал на доске несколько (не меньше двух) различных натуральных чисел, каждое из которых делится нацело на $3$ и оканчивается на $2$. а) Может ли их среднее арифметическое делит…
Множество чисел, состоящее не меньше чем из трёх элементов, назовём «правильным», если его можно разбить на два непустых подмножества с одинаковым произведением чисел. Если какое-т…
$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…
Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из …
Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …
При проведении школьной математической олимпиады итоговая сумма баллов составляется из трёх баллов за участие, $17$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую …