Задание 19 из ЕГЭ по математике (профиль): задача 33
Имеется $40$ куч одинаковых камней, во всех кучах различное натуральное число камней, а общее число камней не превышает $4820$. Найдите наибольшее возможное число камней в самой маленькой куче в каждом из следующих случаев: а) Все камни из куч можно разложить в $5$ равных куч. б) Все камни из всех куч, кроме самой маленькой, можно разложить в $5$ равных куч. в) Самую крупную из куч можно убрать и камни из неё разложить по другим кучам так, что во всех оставшихся кучах камней станет поровну.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может…
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ …
На доске написано более 20, но менее 30 целых чисел. Среднее арифметическое этих чисел равно -3, среднее арифметическое всех положительных из них равно 5, а среднее арифметическое …