Задание 19 из ЕГЭ по математике (профиль): задача 49

Разбор сложных заданий в тг-канале:

Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.

а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $90$?

б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{40}$ ровно $11$ чисел делятся на $90$?

в) Для какого наибольшего натурального числа n могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $90$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если дополнительно известно, что разность прогрессии равна $1$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

Имеется $40$ куч одинаковых камней, во всех кучах различное натуральное число камней, а общее число камней не превышает $4820$. Найдите наибольшее возможное число камней в самой малень…

Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:

Существуют ли такие восемь различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

а) ровно в шесть раз;

б) ровно в пять раз;

в) ровно в че…