Задание 19 из ЕГЭ по математике (профиль): задача 42

Разбор сложных заданий в тг-канале:

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ и $22$.
а) Можно ли через несколько ходов получить число $84$?
б) Могут ли через несколько ходов оба числа снова стать нечётными?
в) Определите наибольшую возможную разность между выписанными числами через $4300$ ходов.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На столе перед нумизматом лежит 2025 монет орлом кверху. За один ход нумизмат переворачивает любые 6 различных монет. Разрешается переворачивать и те монеты, которые уже были задей…

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…

Множество чисел назовём отличным, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество {300; 301; 302; ... 399} отличным?

б) Является ли м…

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…