Задание 19 из ЕГЭ по математике (профиль): задача 42
На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ и $22$.
а) Можно ли через несколько ходов получить число $84$?
б) Могут ли через несколько ходов оба числа снова стать нечётными?
в) Определите наибольшую возможную разность между выписанными числами через $4300$ ходов.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На доске записаны числа 4, 5, 6, 7, 8, 9, 10, . . . 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 32 и отлична от каждой из сумм троек чисел, стёр…
На полигоне расположены $500$ узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно $2$ узла, между любыми двумя узлами проходит не более о…
$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…