Задание 19 из ЕГЭ по математике (профиль): задача 42

Разбор сложных заданий в тг-канале:

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ и $22$.
а) Можно ли через несколько ходов получить число $84$?
б) Могут ли через несколько ходов оба числа снова стать нечётными?
в) Определите наибольшую возможную разность между выписанными числами через $4300$ ходов.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…

Юля задумала натуральное число $a$ и посчитала сумму его цифр, эту сумму она обозначила $b$. Затем она посчитала сумму цифр числа $b$ и обозначила её через $c$. Оказалось, что среди чисел …

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

Множество чисел, состоящее не меньше чем из трёх элементов, назовём «правильным», если его можно разбить на два непустых подмножества с одинаковым произведением чисел. Если какое-т…