Задание 19 из ЕГЭ по математике (профиль): задача 42

Разбор сложных заданий в тг-канале:

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ и $22$.
а) Можно ли через несколько ходов получить число $84$?
б) Могут ли через несколько ходов оба числа снова стать нечётными?
в) Определите наибольшую возможную разность между выписанными числами через $4300$ ходов.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…

Множество чисел, состоящее не меньше чем из трёх элементов, назовём «разделимым», если его можно разбить на два непустых подмножества с одинаковым произведением чисел. Если какое-т…

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

Стрелок ведёт стрельбу по закрывающимся $4n-1 (n ∈ N, n > 1)$ мишеням, расположенным в одну линию друг за другом. Результаты стрельбы заносятся в одну строку, состоящую из $4n - 1$ кле…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!