Задание 19 из ЕГЭ по математике (профиль): задача 41

Разбор сложных заданий в тг-канале:

При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, 13 баллов за каждую взятую и решённую задачу и (8) баллов за каждую взятую и нерешённую задачу. Каждую задачу участник выбирает себе самостоятельно в запечатанном конверте. Число задач, предлагаемых для решения, не ограничено. а) У одного из участников, решившего p задач и не решившего q задач, итоговая сумма оказалась равной u баллов. Найдите итоговую сумму участника, решившего 2p задач и не решившего 2q задач. б) Какое минимальное число задач надо взять, чтобы итоговая сумма оказалась равной нулю? в) Докажите, что если итоговая сумма у двух участников оказалась одинаковой, то разность между числом всех задач, взятых для решения одним участником, и числом задач, взятых для решения другим участником, делится на 21.

Объект авторского права ООО «Легион»

Посмотреть решение

Бесплатный интенсив по математике (профиль)

На бесплатном интенсиве ты:

✅ Сможешь увеличить свой результат с нуля на 40 баллов, решишь 100+ прототипов

✅ Изучишь основные темы по профильной математике, узнаешь лайфхаки и разберёшься в структуре всего экзамена

✅ Наработаешь твердую базу и заполнишь пробелы предыдущих лет

У тебя будет:

  • 1 онлайн-вебинар по 1 часу в неделю.
  • Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
  • Скрипты, конспекты, множество полезных материалов.
  • Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
  • Отдельная беседа в ТГ с сокурсниками и преподавателями.

Вместе с этой задачей также решают:

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы о…

Можно ли в бесконечно убывающей последовательности 1;12;13;14;15;... выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, ко…

Дима задумал натуральное число n и посчитал сумму его цифр s. а) Возможно ли, что ns=35? б) Может ли ns равняться 1552? в) Известно, что ns<14300 и n — трёхзначное число. Найдите наибольшее возможное значение n.

Можно ли в бесконечно убывающей последовательности 1;12;13;14;15;... выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…