Задание 19 из ЕГЭ по математике (профиль): задача 46

Разбор сложных заданий в тг-канале:

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы он задумал числа 1,-5, 6, то на доске был бы выписан набор -5, -4, 1, 1, 2, 6, 7.

а) На доске был выписан набор -5, -2, 3, 4, 7, 9, 12. Какие числа задумал учитель?

б) Для некоторых трёх задуманных чисел на доске выписан набор. Всегда ли по этому набору можно определить задуманные числа?

в) Дополнительно известно, что учитель задумал 4 числа. Все они не равны 0. Какое наибольшее число нулей может быть выписано на доске?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дима задумал натуральное число $n$ и посчитал сумму его цифр $s$. а) Возможно ли, что $n⋅ s=35$? б) Может ли $n⋅ s$ равняться $1552$? в) Известно, что $n⋅ s < 14300$ и $n$ — трёхзначное число. Найдите наибольшее возможное значение $n$.

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

Множество чисел назовём отличным, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество {300; 301; 302; ... 399} отличным?

б) Является ли м…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.