Задание 19 из ЕГЭ по математике (профиль): задача 52

Разбор сложных заданий в тг-канале:

Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, которые образуют арифметическую прогрессию.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=15$; б) $n=33$;…

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

Петя задумал трёхзначное натуральное число $N$ и посчитал число $m$ — отношение числа $N$ к сумме его цифр. а) Возможно ли, что $m=43$? б) Возможно ли, что $m=33$, если первая цифра числа $N$ …

Для проведения тестирования было подготовлено $4n + 3 (n ∈ N)$ вопросов. Результаты тестирования заносятся на отдельную карточку в одну строку, состоящую из $4n + 3$ клеток. В случае в…