Задание 19 из ЕГЭ по математике (профиль): задача 53

Разбор сложных заданий в тг-канале:

Существуют ли такие восемьсот различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

а) ровно в 500 раз;

б) ровно в 400 раз?

в) Найдите наименьшее возможное натуральное число, равное отношению среднего арифметического этих чисел к их наибольшему общему делителю.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.

а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?

б) Возможно ли, что сумма всех…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!