Задание 19 из ЕГЭ по математике (профиль): задача 53
Существуют ли такие восемьсот различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
а) ровно в 500 раз;
б) ровно в 400 раз?
в) Найдите наименьшее возможное натуральное число, равное отношению среднего арифметического этих чисел к их наибольшему общему делителю.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=12$; б) $n=21$;…