Задание 19 из ЕГЭ по математике (профиль): задача 17

Разбор сложных заданий в тг-канале:

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе принимают участие $5$ человек. Каждый участник за лучшую (по его мнению) задачу давал $5$ баллов, за следующую — $4$ балла, и так далее, за четвёртую — $2$ балла. По каждой задаче баллы суммировались, так определялся рейтинг задачи. а) Могли ли все рейтинги быть простыми числами? б) Могла ли сумма двух наибольших рейтингов быть равна сумме всех остальных? в) Какова минимальная сумма третьего и четвёртого по величине рейтингов, если они расположены в порядке невозрастания?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

При проведении школьной математической олимпиады итоговая сумма баллов составляется из трёх баллов за участие, $17$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую …

На столе перед нумизматом лежит 1000 монет орлом кверху. За один ход нумизмат переворачивает любые 7 различных монет. Разрешается переворачивать в том числе и те монеты, которые уж…

На доске записаны числа 1, 2, 3, ..., 33. За один ход разрешается стереть произвольные три числа, сумма которых больше 66 и отлична от каждой из сумм троек чисел, стёртых на предыд…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!