Задание 19 из ЕГЭ по математике (профиль): задача 9
Костя написал на доске несколько различных натуральных чисел, каждое из которых делится нацело на $7$ и оканчивается на $8$. а) Может ли их сумма равняться $644$? б) Может ли их среднее арифметическое равняться $200$? в) Какое наибольшее количество чисел может быть выписано на доску, если их среднее арифметическое является чётным натуральным числом и не превышает $500$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…
Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:
…На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых меньше 40 и отлична от каждой из сумм троек чисел, стёртых на предыд…