Задание 19 из ЕГЭ по математике (профиль): задача 9
Костя написал на доске несколько различных натуральных чисел, каждое из которых делится нацело на $7$ и оканчивается на $8$. а) Может ли их сумма равняться $644$? б) Может ли их среднее арифметическое равняться $200$? в) Какое наибольшее количество чисел может быть выписано на доску, если их среднее арифметическое является чётным натуральным числом и не превышает $500$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …
На столе перед нумизматом лежит 2025 монет орлом кверху. За один ход нумизмат переворачивает любые 6 различных монет. Разрешается переворачивать и те монеты, которые уже были задей…
Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:
…