Задание 19 из ЕГЭ по математике (профиль): задача 10
Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:
а) Все камни из куч можно разложить в $4$ равные кучи.
б) Все камни из всех куч, кроме самой большой, можно разложить в $4$ равные кучи.
в) Любую из куч можно убрать и камни из неё разложить по другим кучам так, что во всех оставшихся кучах камней будет поровну.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ …
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ …