Задание 19 из ЕГЭ по математике (профиль): задача 11
Тридцать шариков массой $1$ г, $2$ г, $…$, $30$ г разложили по двум коробкам, в каждой коробке хотя бы один шарик. Масса каждого шарика выражается целым числом граммов. Затем из второй коробки переложили в первую один шарик. После этого средняя масса шариков в первой коробке увеличилась на $5$ г. а) Могло ли такое быть, если первоначально в первой коробке лежали только шарики массой $5$ г, $6$ г, $7$ г и $10$ г? б) Могла ли средняя масса шариков в первой коробке первоначально равняться $17{,}3$ г? в) Какое наибольшее число шариков могло быть первоначально в первой коробке?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …
На столе перед нумизматом лежит 1000 монет орлом кверху. За один ход нумизмат переворачивает любые 7 различных монет. Разрешается переворачивать в том числе и те монеты, которые уж…
Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:
а) четыре числа;
б) сто чисел;
в) бесконечное множество чисел, котор…