Задание 19 из ЕГЭ по математике (профиль): задача 11
Тридцать шариков массой $1$ г, $2$ г, $…$, $30$ г разложили по двум коробкам, в каждой коробке хотя бы один шарик. Масса каждого шарика выражается целым числом граммов. Затем из второй коробки переложили в первую один шарик. После этого средняя масса шариков в первой коробке увеличилась на $5$ г. а) Могло ли такое быть, если первоначально в первой коробке лежали только шарики массой $5$ г, $6$ г, $7$ г и $10$ г? б) Могла ли средняя масса шариков в первой коробке первоначально равняться $17{,}3$ г? в) Какое наибольшее число шариков могло быть первоначально в первой коробке?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ …
В офисе работает не менее $60$ и не более $80$ человек. К объявленному началу собрания пришло меньше половины сотрудников (а возможно, что и никто не пришёл). Спустя десять минут после…
Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:
а) четыре числа;
б) сто чисел;
в) бесконечное множество чисел, котор…