Задание 19 из ЕГЭ по математике (профиль): задача 12

Разбор сложных заданий в тг-канале:

Тридцать пять шариков массой $1$ г, $2$ г, $…$, $35$ г разложили по двум коробкам, в каждой коробке хотя бы один шарик. Масса каждого шарика выражается целым числом граммов. Затем из второй коробки переложили в первую один шарик. После этого средняя масса шариков в первой коробке увеличилась на $4$ г. а) Могло ли такое быть, если первоначально в первой коробке лежали только шарики массой $3$ г, $12$ г и $27$ г? б) Могла ли средняя масса шариков в первой коробке первоначально равняться $12{,}6$ г? в) Какое наибольшее число шариков могло быть первоначально в первой коробке?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …

Витя написал на доске несколько (не меньше двух) различных натуральных чисел, каждое из которых делится нацело на $3$ и оканчивается на $2$. а) Может ли их среднее арифметическое делит…