Задание 19 из ЕГЭ по математике (профиль): задача 12
Тридцать пять шариков массой $1$ г, $2$ г, $…$, $35$ г разложили по двум коробкам, в каждой коробке хотя бы один шарик. Масса каждого шарика выражается целым числом граммов. Затем из второй коробки переложили в первую один шарик. После этого средняя масса шариков в первой коробке увеличилась на $4$ г. а) Могло ли такое быть, если первоначально в первой коробке лежали только шарики массой $3$ г, $12$ г и $27$ г? б) Могла ли средняя масса шариков в первой коробке первоначально равняться $12{,}6$ г? в) Какое наибольшее число шариков могло быть первоначально в первой коробке?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Костя написал на доске несколько различных натуральных чисел, каждое из которых делится нацело на $7$ и оканчивается на $8$. а) Может ли их сумма равняться $644$? б) Может ли их среднее …
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.
Музыкальную школу посещают более $20$ и менее $45$ учащихся. На областной конкурс было заявлено более половины ребят из музыкальной школы, но потом ровно один из них отказался участвов…