Задание 19 из ЕГЭ по математике (профиль): задача 50

Разбор сложных заданий в тг-канале:

Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.

а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $24$?

б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{30}$ ровно $9$ чисел делятся на $24$?

в) Для какого наибольшего натурального числа $n$ могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $24$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если известно, что разность прогрессии равна $1$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На доске записаны числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 27 и отлична от к…

Имеется $40$ куч одинаковых камней, во всех кучах различное натуральное число камней, а общее число камней не превышает $4820$. Найдите наибольшее возможное число камней в самой малень…

На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно 11, среднее арифметическое всех положительных из них равно 18, а среднее арифметическое…

Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев: