Задание 19 из ЕГЭ по математике (профиль): задача 50
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $24$?
б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{30}$ ровно $9$ чисел делятся на $24$?
в) Для какого наибольшего натурального числа $n$ могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $24$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если известно, что разность прогрессии равна $1$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {6}$ этого числа? б) Существует ли двузначное натуральное число, произведение цифр которого рав…
Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:
а) пять чисел;
б) пятьдесят чисел;
в) бесконечное множество чисел, ко…
Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:
…