Задание 19 из ЕГЭ по математике (профиль): задача 61
В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.
а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?
б) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2017$?
в) Для каждого $n (n≥5)$ определите, сколько различных значений может принимать сумма $n$ чисел с таким свойством.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Олег задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=3402$? б) Может ли $n⋅ s=6912$? в) Известно, что $n⋅ s>1786$. Найдите наименьшее возможное зна…
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ …