Задание 19 из ЕГЭ по математике (профиль): задача 61

Разбор сложных заданий в тг-канале:

В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.

а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?

б) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2017$?

в) Для каждого $n (n≥5)$ определите, сколько различных значений может принимать сумма $n$ чисел с таким свойством.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

На столе перед нумизматом лежит 2025 монет орлом кверху. За один ход нумизмат переворачивает любые 6 различных монет. Разрешается переворачивать и те монеты, которые уже были задей…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {6}$ этого числа? б) Существует ли двузначное натуральное число, произведение цифр которого рав…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!