Задание 19 из ЕГЭ по математике (профиль): задача 61

Разбор сложных заданий в тг-канале:

В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.

а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?

б) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2017$?

в) Для каждого $n (n≥5)$ определите, сколько различных значений может принимать сумма $n$ чисел с таким свойством.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {6}$ этого числа? б) Существует ли двузначное натуральное число, произведение цифр которого рав…

При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, $13$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую …

а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может…

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!