Задание 19 из ЕГЭ по математике (профиль): задача 61
В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.
а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?
б) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2017$?
в) Для каждого $n (n≥5)$ определите, сколько различных значений может принимать сумма $n$ чисел с таким свойством.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…
Множество чисел назовём отличным, если его можно разбить на два подмножества с одинаковой суммой чисел.
а) Является ли множество {300; 301; 302; ... 399} отличным?
б) Является ли м…
На полигоне расположены $300$ узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно $2$ узла, между любыми двумя узлами проходит не более о…