Задание 19 из ЕГЭ по математике (профиль): задача 61
В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.
а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?
б) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2017$?
в) Для каждого $n (n≥5)$ определите, сколько различных значений может принимать сумма $n$ чисел с таким свойством.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {6}$ этого числа? б) Существует ли двузначное натуральное число, произведение цифр которого рав…
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего. Сумма все…