Задание 19 из ЕГЭ по математике (профиль): задача 59
а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может быть у последовательности $c_n$?
б) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $d_k = b_1 + b_3 + b_5 +... + b_{2k-1}$. Какое наибольшее количество подряд идущих членов последовательности $d_k$ могут быть простыми числами?
в) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $c_n = b_1 + 2b_{n+1} + 3b_{n+2}$. Какое наибольшее количество подряд идущих членов последовательности $c_n$ могут быть простыми числами?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
На сайте провели опрос, кого из $165$ певцов посетители считают лучшим певцом года. На сайте отображается рейтинг каждого певца — доля голосов, отданная за него, в процентах, округлё…
В ряд выписаны $n$ натуральных чисел. Сумма любых четырёх последовательных чисел равна $12$.
а) Возможно ли, что сумма всех чисел равна $6050$, если $n = 2016$?
б) Возможно ли, что сумма в…