Задание 19 из ЕГЭ по математике (профиль): задача 59

Разбор сложных заданий в тг-канале:

а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может быть у последовательности $c_n$?

б) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $d_k = b_1 + b_3 + b_5 +... + b_{2k-1}$. Какое наибольшее количество подряд идущих членов последовательности $d_k$ могут быть простыми числами?

в) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $c_n = b_1 + 2b_{n+1} + 3b_{n+2}$. Какое наибольшее количество подряд идущих членов последовательности $c_n$ могут быть простыми числами?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

Петя задумал трёхзначное натуральное число $N$ и посчитал число $m$ — отношение числа $N$ к сумме его цифр. а) Возможно ли, что $m=43$? б) Возможно ли, что $m=33$, если первая цифра числа $N$ …

Для проведения тестирования было подготовлено $4n + 3 (n ∈ N)$ вопросов. Результаты тестирования заносятся на отдельную карточку в одну строку, состоящую из $4n + 3$ клеток. В случае в…