Задание 19 из ЕГЭ по математике (профиль): задача 59
а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может быть у последовательности $c_n$?
б) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $d_k = b_1 + b_3 + b_5 +... + b_{2k-1}$. Какое наибольшее количество подряд идущих членов последовательности $d_k$ могут быть простыми числами?
в) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $c_n = b_1 + 2b_{n+1} + 3b_{n+2}$. Какое наибольшее количество подряд идущих членов последовательности $c_n$ могут быть простыми числами?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Музыкальную школу посещают более $20$ и менее $45$ учащихся. На областной конкурс было заявлено более половины ребят из музыкальной школы, но потом ровно один из них отказался участвов…
Администраторы сайта «Математические задачи и головоломки» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…